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Outline 

 Scalable stochastic optimization 

– PIPS: high-performance computing for stochastic optimization 

– Application to economic dispatch of electricity in the U.S. power grid 

 

 Parameter estimation 

– Application: estimating the inertia of electrical generators using phasor 
measurements units 

– Problem formulation and computational setup  

 

 Solution methods and HPC: dynamic optimization  

– Bonus application: dynamically secure optimal power flow 

– Structured quasi-Newton 
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Mathematical optimization procedures for power grid 
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Economic optimization of generation  

Optimal control to ensure grid stability 

Monitoring (parameter/state estimation)  

Stochastic optimization 

Dynamic optimization 
(defined by dynamical 

systems) 

The U.S. power grid is one of the most complex engineering systems. 
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Stochastic optimization on high-performance computers 



Electricity generation and dispatch under uncertainty 
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The sharp drops in wind power need to be   
forecasted well in advance to give the thermal  
generators enough time to ramp up generation. 

Wind forecasting results in wind scenarios,  
requiring stochastic optimization  

Hours since June 1, 2006, 12am 



Stochastic programming  

 Two-stage stochastic programming with recourse 

 

 

 

 

 

 Stochastic linear programming:  

 

 

 

 Sample average approximation (SAA)  
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Parallel interior-point methods for stochastic optimization 
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Structured linear systems enable parallel linear algebra 



The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Block Elimination 
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Multiply row i by                      and sum all the rows to obtain    



Parallel computational pattern 
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Efficiency of block-angular linear algebra 
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Economic dispatch for the State of 
Illinois with up to 32,768 scenarios 

 
 

Largest instance has 4.08 billion 
decision variables and 4.12 billion  

constraints (32,768 scenarios).  
 

Execution time is approx. constant each time the size of the problem and 
the number of nodes is doubled. 



Strong scaling – optimization and computational components 
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The Illinois ED instance used in the XK7 runs has 4.08 billion decision 
variables and 4.12 billion constraints (32,768 scenarios).  



Optimization parallel efficiency 

Nodes/scens Wall time (sec) IPM Iterations Time per IPM 
iteration (sec) 

4096   3548.5 103 33.57 

8192   3883.7 112 34.67 

16384  4208.8 123 34.80 

32768 4781.7 133 35.95 
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The algorithm is also scalable About 75% efficiency. 

Solve to completion - Illinois ED on Intrepid BG/P 



PIPS-IPM/NLP 

 Open-source, available at 

      https://github.com/Argonne-National-Laboratory/PIPS 

 

 Development started in 2009 
– Other contributors: N. Chiang, M. Lubin, V. Zavala, M. Anitescu 

 

 Currently used by Exxon and United Technologies. 

 

 Ported and runs on various HPC platforms, IBM BG/P & Q (ANL), Cray XK7 
(ORNL), Cray XC30 and XK7 (Swiss National Computing Centre) 

 

 PIPS-S – parallel revised simplex (Lubin, Petra, Hall (2012)) 
– Coin-Or Cup 2013 and COAP Best paper 2013 

 

 Under development: PIPS-SBB - parallel branch bound for mixed integer 
stochastic programing (Rajan, Obxberry (LLNL), and Petra (ANL)) 
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Dynamic optimization  
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        Inertia estimation during dynamic transients 
 
 
            
             
        Transient stability optimal power flow 
 Joint work with: Naiyuan Chiang (UTRC), Shri Abyankhar,(ANL) and  

Mihai Anitescu (ANL) 

Joint work with: Noemi Petra (UC Merced), Zheng Zhang (MIT),  
Emil Constantinescu (ANL), and Mihai Anitescu (ANL) 



Power grid parameter and state estimation 
 Estimation is essential in operating the system: real-time monitoring and fault 

detection, dynamic stability analysis, transmission  switching, etc. 
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 Data acquisition devices  

– SCADA (supervisory control and data acquisition) – 10 seconds sampling/response rate 

– PMU (phasor measurement unit) – 30 ms sampling rate, measures dynamic states (e.g., 
phase, amplitude) 

 

 Realtime estimation of large power grid systems under live data streaming. 

 

 



Parameter estimation as a dynamic optimization problem 
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Parameter-to-observable mapping 

States (forward model) Observables Parameters 

Inertia 

Data Mathematical model 

Angle, frequency, etc. (generators) 
phase, amplitude (buses)  

Phase, amplitude 

Find the parameters that reconcile observables with measurements 

    PMU observations 



Power system dynamics described by a DAE system 
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Generator  
equations 
 

Current 
balance  
 

(2 eqns per bus) 

(7+2 eqns per 
generator) 

P. Sauer and M. A. Pai. – “Power Systems Dynamics and Stability”, Stipes Publishing Co, 2007 

Swing equation: 
generator inertia 
to be estimated 



The inertia estimation problem 

 Estimating the generators inertia during a dynamic transient  (“bump” in load or 
drop in generation)  

 PMU measurements: voltage phase and amplitude 
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t=[0,0.1] 
(steady state) 

t=[0.1,0.3] 
(load disturbance) 

t>0.3 
(post-disturbance) 

3-gen, 9-bus system  

N. Petra,  C. G. Petra, Z. Zhang, E. Constantinescu, 
M. Anitescu, A Bayesian Approach for Parameter 
Estimation with Uncertainty for Dynamic Power 
Systems, submitted to IEEE Transactions on Power 
Systems. 



Transient stability optimal power flow (TSOPF) 

 Optimal power flow: economic optimization (nonlinear 
economic dispatch) 

 

 Transient stability studies of the power system stability 
following a major transient (loss of transmission lines, 
generators, and/or drastic changes in load) 

 

 TSOPF controls the generators to ensure transient stability at 
minimum generation cost (steady-state). 

 

 Example: frequency stability using a penalty approach 
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Computational framework for dynamic optimization 
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Algebraically (closed-form) available 
First and second order derivatives readily available 

(ADor hand coding)  

(Structured) AD in Julia -> StructJuMP 
 

Simulation-based with adjoint sensitivities 

(one adjoint solve) 

(one DAE solve) PETSc time-stepping 
solver and adjoints 

PIPS structure 
exploiting for 
HPC 



Structured secant update 

 Want a symmetric Hessian approximation that uses the available Hessian, namely 

 

 

 Structured BFGS update (derived analytically) 

 

 

 

 

 Convergence in a (modified) line-search framework using Wolfe conditions 

 Super linear convergence under standard assumptions 

 Provably better performance for low-rank unknown Hessians 
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Simulation results for inertia estimation problem 
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Table: A study of the effect of the time horizon (left) and frequency of observations (right) on the 
ability to recover the inertia parameter. “True” values of the inertias are (23.60, 6.42, and 3.02). 



Uncertainty quantification of the inertia estimation 
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Figure 1: Surface plot of the trace of the 
Gaussianized posterior covariance as a 
function of noise and load 

Figure 2: A “whiskers boxplot” of the prior and posterior mean and variances for two values of load and data noise 
for  the three inertia parameters. The central mark is the median, the edges of the box are the 25th and 75th  
percentiles and the “whiskers” extend to the most extreme data points. 



Summary 

 Stochastic optimization is a scalable computational paradigm. 

 Scalable optimization algorithms are good candidates for solving estimation and 
optimal control problems. 

 General mathematical and computational setup 

– driven by power grid applications but general to accommodate other applications as 
well. 
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Future research 

 Larger, realistic power grid systems and HPC computing 

 Full posterior exploration in high dimensions 

 State estimation  

– Incomplete observations: only 20% of the buses are instrumented with PMUs 

– Noisy measurements 



25 

Thanks for your attention! 
 

Questions? 
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PIPS – parallel solvers suite for structured optimization 
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Problem  
formulation 

Optimization 
algorithm 

Linear algebra 

LP/QP 

Mehrotra IPM Filter IPM 

Stochastic 
 LP/QP 

NLP 

Stochastic 
 NLP 

Stoch+Network 

Stoch+Network+PDAE 
Stoch+DAE/ODE Control 

Quasi-Newton  
IPM 

Interface Low level 
C, C++, and file 

AMPL 
(hackishly parallel) 

Julia 
(JuMP) 

 

StructJuMP 
(fully parallel) 

serial (OOQP) Discretized PDAE 

block-angular (MPI+X) 
 

network 
partitioning  

Dynamic parameter  
estimation 

OOQP - Object-oriented software for quadratic programming (Michael Gertz and Steve Wright , Argonne, 2003) 



Interior-point methods (IPMs) 

        Idea: Solve a sequence of log-barrier problems (              )  using Newton method. 

 

 Best known iteration complexity (polynomial) for LPs 

 Mehrotra (1992, predictor-corrector primal-dual) 

– Best practical performance 

 Filter line search IPMs for nonlinear programming (NLP) 

 

 Direct matrix factorizations required by the ill-conditioned linear systems 
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Newton’s Method

Solve Sequence of BPs with

NLP Barrier Problem

KKT Matrix

                    



Example: stochastic economic dispatch 
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• Sparse matrices due to network structure, time coupling, etc. 
• Many scenarios (1,000s, 10,000s …) to accurately model uncertainty 
• “Large” scenarios (Wi  up to 250,000 x 250,000)  
• “Large” 1st stage  (10,000s, 100,000s of variables) 

Large-scale (dual) block-angular linear programming problem 



Quasi-Newton methods 
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Steepest descent Newton 

Secant quasi-Newton approximations   

Quasi-Newton 

Davidon-Fletcher-Powell (DFP) Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 

satisfying  

Here 

Unstructured quasi-Newton secant updates 



Deriving the structured BFGS update 
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We solved it analytically to obtain the structured BFGS update: 

Notation: 



Preliminary numerical results 
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Figure 1: Performance profiles for nonlinear unconstrained CUTEst problems: left plot for problems 
with full-rank missing Hessian terms, right plot for low-rank missing Hessian terms. 



Stochastic optimization in power grid 
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Minimize generation cost subject to demand and network power flow constraints in the presence of 

(stochastic) weather conditions  economic dispatch (ED) / optimal power flow (OPF) 


